On (anti-)multiplicative Generalized Derivations

نویسندگان

  • Daniel Eremita
  • Dijana Ilǐsević
  • D. ILIŠEVIĆ
چکیده

Let R be a semiprime ring and let F, f : R → R be (not necessarily additive) maps satisfying F (xy) = F (x)y + xf(y) for all x, y ∈ R. Suppose that there are integers m and n such that F (uv) = mF (u)F (v) + nF (v)F (u) for all u, v in some nonzero ideal I of R. Under some mild assumptions on R, we prove that there exists c ∈ C(I) such that c = (m + n)c2, nc[I, I] = 0 and F (x) = cx for all x ∈ I. The main result is then applied to the case when F is multiplicative or anti-multiplicative on I.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the superstability of a special derivation

The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.

متن کامل

On the stability of generalized derivations on Banach algebras

We investigate the stability of generalizedderivations on Banach algebras with a bounded central approximateidentity. We show that every approximate generalized derivation inthe sense of Rassias, is an exact generalized derivation. Also thestability problem of generalized derivations on the faithful Banachalgebras is investigated.

متن کامل

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012